Results from CONTESSA: A Phase 3 study of tesetaxel plus a reduced dose of capecitabine versus capecitabine alone in patients with HER2-, hormone receptor + (HR+) metastatic breast cancer (MBC) who have previously received a taxane

Joyce O'Shaughnessy¹, Lee Schwartzberg², Martine Piccart³, Hope S. Rugo⁴, Denise A. Yardley⁵, Javier Cortes⁶, Michael Untch⁷, Nadia Harbeck⁸, Gail S. Wright⁹, Igor Bondarenko¹⁰, John Glaspy¹¹, Zbigniew Nowecki¹², Fadi Kayali¹³, Arlene Chan¹⁴, Christelle Levy¹⁵, Mei-Ching Liu¹⁶, Sung-Bae Kim¹⁷, Julie Lemieux¹⁸, Alexey Manikhas¹⁹, Sara Tolaney²⁰, Elaine Lim²¹, Andrea Gombos³, Agostina Stradella²², Mark Pegram²³, Peter Fasching²⁴, Laszlo Mangel²⁵, Vladimir Semiglazov²⁶, Veronique Dieras²⁷, Luca Gianni²⁸, Michael A. Danso²⁹, Jeff Vacirca³⁰, Stew Kroll³¹, Joseph O'Connell³¹, Kevin Tang³¹, Thomas Wei³¹ and Andrew Seidman³²

¹Baylor University Medical Center, Texas Oncology, US Oncology, Dallas, TX; ²West Cancer Center, Memphis, TN; ³Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium; ⁴University of California San Francisco Comprehensive Cancer Center, San Francisco, CA; ⁵Sarah Cannon Research Institute and Tennessee Oncology, Nashville, TN; ⁶IOB Institute of Oncology, Quironsalud Group, Madrid and Barcelona, Spain and Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; ⁷Helios Hospital Berlin-Buch, Berlin, Germany; ⁸Brustzentrum der Universität München (LMU), Munich, Germany; ⁹Sarah Cannon Research Institute and Florida Cancer Specialists, New Port Richey, FL; ¹⁰City Clinical Hospital No4, Dnipro, Ukraine; ¹¹University of California Los Angeles Hematology Oncology Center, Los Angeles, CA; ¹²Narodowy Instytut Onkologii-Panstwowy Instytut Badawczy, Warsaw, Poland; ¹³Florida Cancer Specialists, Fort Myers, FL; ¹⁴Breast Cancer Research Centre-Western Australia and Curtin University, Perth, Australia; ¹⁵Centre François Baclesse, Caen, France; ¹⁶Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan; ¹⁷Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea, Republic of; ¹⁸CHU de Québec-Université Laval, Quebec, QC, Canada; ¹⁹City Clinical Oncology Dispensary, St. Petersberg, Russian Federation; ²⁰Dana-Farber Cancer Institute, Boston, MA; ²¹National Cancer Centre, Singapore, ²²Institut Catala d'Oncologia Hospital Duran i Reynals, Barcelona, Spain; ²³Stanford Women's Cancer Center, Palo Alto, CA; ²⁴Universitätsklinikum Erlangen, Germany; ²⁵University of Pécs Institute Oncotherapy, Pécs, Hungary; ²⁶Petrov Research Institute of Oncology, St. Petersburg, Russian Federation; ²⁷Centre Eugène Marquis, Rennes, France; ²⁸I.R.C.C.S. Ospedale San Raffaele, Milan, Italy; ²⁹Virginia Oncology Associates, US Oncology, Norfolk, VA; ³⁰New York Cancer and Blood Specialists, New York, NY; ³¹Odonate Therapeutics, Inc., San Diego, CA;

Disclosures

Dr. O'Shaughnessy has received consulting fees from AbbVie, Agendia, AstraZeneca, Celgene/Bristol-Myers Squibb Company, Eisai, Eli Lilly and Company, Genentech/Roche, Genomic Health, GRAIL, Heron Therapeutics, Immunomedics, Ipsen, Jounce Therapeutics, Novartis, Odonate Therapeutics, Pfizer, Puma Biotechnology and Seagen

Background and Rationale

- Chemotherapy regimens that offer robust efficacy while preserving patient quality of life are needed for patients with MBC
- Tesetaxel is a novel, oral taxane with Q3W dosing
- Tesetaxel demonstrated encouraging monotherapy activity in a Phase 2 trial in patients with HR positive, HER2 negative MBC^a
 - Confirmed objective response rate (ORR) = 45%
- Based on 211 patients treated with tesetaxel at 27 mg/m² Q3W^b
 - Grade \geq 3 neuropathy = 3%
 - Grade 2 alopecia = 5%
 - No hypersensitivity reactions
- We present results of the protocol-specified primary analysis of CONTESSA, a Phase 3 study of tesetaxel plus a reduced dose of capecitabine vs. capecitabine alone in patients with HR positive, HER2 negative MBC who have previously received a taxane

^a Seidman et al, 2018 ASCO Annual Meeting

^b As monotherapy (N=180) or in combination with capecitabine at 1,750–2,500 mg/m² (N=31)

San Antonio Breast Cancer Symposium[®], December 8 – 11, 2020

Chemical and Pharmacologic Properties of Paclitaxel, Docetaxel and Tesetaxel

Molecule	Paclitaxel	Docetaxel	Tesetaxel
Structure	OH OH OH OH HO HO HO OH HO OH HO OH OH O	OH OH OH OH HO HO HO O HO O HO O HO OH OH	Nitrogen- containing functional groups F OH NH O NH O Taxane core
Substantially effluxed by P-gp pump*	Yes	Yes	No
Oral bioavailability in preclinical studies	8% ^a	18% ^b	56%
Solubility (µg/mL)⁰	0.3 ^d	0.5 ^e	41,600
Terminal plasma half-life in humans (t _{1/2})	0.5 days ^f	0.5 days ^g	8 days ^h

^{*} The P-glycoprotein (P-gp) efflux pump mediates gastric absorption as well as chemotherapy resistance

^a Shanmugam et al, *Drug Development and Industrial Pharmacy* 2015;41(11):1864-1876

^b McEntee et al, Veterinary and Comparative Oncology 2003;1(2):105-112

^c At pH conditions similar to gastric fluid

^d Montaseri, Taxol: Solubility, Stability and Bioavailability 1997

^e Bharate et al, *Bioorganic & Medicinal Chemistry Letters* 2015;25(7):1561-1567

^f Tan et al, British Journal of Cancer 2014;110(11):2647-54

^g Taxotere (docetaxel) FDA prescribing information

^h Lang et al, 2012 ASCO Annual Meeting, *Journal of Clinical Oncology* 2012;20(15 supp):2555

Tesetaxel Dosing and Administration

GI₅₀=concentration of drug required to inhibit growth by 50%; Q3/4W=once per week for 3 of 4 weeks; Q3W=once every 3 weeks

^a Shionoya et al, Cancer Science 2003;94(5):459-66

^b Trock et al, Journal of the NCI 1997;89(13):917-31

^c Tan et al, British Journal of Cancer 2014;110(11):2647-54

^d Pharmacokinetic data from Studies 927A-PRT001, 927E-PRT003, 927E-PRT005, 927A-PRT006, and 927E-PRT007 ^e National Comprehensive Cancer Network (NCCN), Clinical Practice Guidelines in Oncology 2020 ^f Corticosteroid + antihistamine + H₂ antagonist as per prescribing label

Study Design

Key Eligibility Criteria

- HR positive, HER2 negative MBC
- 0-1 prior chemotherapy regimens for MBC
- Prior taxane in the neoadjuvant or adjuvant setting required
 - No restriction on disease-free interval (DFI)
- Any number of prior endocrine therapies
- Any number of prior approved targeted therapies (*e.g.*, CDK 4/6 inhibitors, everolimus)
- Measurable disease per RECIST 1.1 or bone-only disease with lytic component

PO=oral dosing; BID=twice per day

Statistical Considerations

- Primary endpoint
 - Progression-free survival (PFS) as assessed by the Independent Radiologic Review Committee (IRC)
 - 90% power to detect a hazard ratio of 0.71 (median PFS difference of 2.5 months) by stratified log-rank test based on an expected 347 events
- Secondary endpoints
 - Overall survival (OS)
 - ORR as assessed by IRC^a
 - Disease control rate (DCR) [ORR or stable disease of ≥24 weeks] as assessed by IRC^a
- Stratified by the presence of visceral disease, geographic region and number of prior chemotherapy regimens for advanced disease
- Median follow-up = 13.9 months
- ^a In patients with measurable disease

Baseline Characteristics

Baseline Characteristic	Tesetaxel plus Capecitabine (N=343)	Capecitabine Alone (N=342)
Median age, years (min, max)	56 (23, 85)	57 (29, 84)
Median time from initial diagnosis, years (min, max)	5.1 (0.9, 24.6)	5.2 (0.8, 24.0)
ECOG status, 0 / 1 / 2+	54% / 44% / 2%	59% / 39% / 2%
North America / Europe / Asia-Pacific	45% / 37% / 18%	45% / 38% / 17%
Prior therapy (neo/adjuvant or metastatic setting)		
Taxane	100%	99%
Anthracycline	84%	88%
Alkylator	93%	92%
Endocrine therapy	93%	90%
CDK 4/6 inhibitor	49%	51%
No. of prior chemo regimens for MBC, 0 / 1	92% / 8%	94% / 6%
DFI following prior taxane <24 months	33%	32%
Visceral disease	80%	78%
Common sites of disease		
Bone	70%	68%
Liver	60%	55%
Lung	38%	34%

PFS as Assessed by IRC

	Tesetaxel plus Capecitabine (N=343)	Capecitabine Alone (N=342)	
Events	155	169	
Median Months (95% CI)	9.8 (8.4 – 12.0) 2 9-Month Im	6.9 (5.6 - 8.3)	
Hazard Ratio (95% CI)	0.716 (0.573 – 0.895)		
P-value	0.003		

Cl=confidence interval

San Antonio Breast Cancer Symposium®, December 8 – 11, 2020

PFS as Assessed by IRC by Protocol-Specified Subgroups

Secondary Endpoints

• OS data are immature; protocol-specified final analysis of OS is expected in 2022

^a In patients with measurable disease

24-week DCR=ORR or stable disease of ≥24 weeks

All Grade Treatment-Emergent Adverse Events (TEAEs) That Occurred in ≥20% of Patients in Either Arm

System Organ Class	TEAE	Tesetaxel plus Capecitabine (N=337) (%)	Capecitabine Alone (N=337) (%)
	Neutropenia	76.9	22.6
Hematologic	Anemia	29.7	19.0
	Thrombocytopenia	20.5	6.2
	Nausea	62.6	42.7
	Diarrhea	61.1	46.9
Gastrointestinal	Constipation	33.2	15.1
	Vomiting	30.6	19.9
	Abdominal pain	21.7	17.2
	Stomatitis	20.5	29.1
	Hand-foot syndrome	50.7	66.2
Other	Neuropathy	48.1	13.6
	Fatigue	47.8	34.4
	Decreased appetite	28.8	19.3
	Alopecia*	28.2	2.4
	Hypokalemia	20.5	6.8

*Grade 2 alopecia (tesetaxel plus capecitabine vs. capecitabine alone): 8.0% vs. 0.3%

Note: Safety population includes 674 patients who were randomized and received study drug

Grade ≥3 TEAEs That Occurred in ≥5% of Patients in Either Arm

System Organ Class	TEAE	Tesetaxel plus Capecitabine (N=337) (%)		Capecitabine Alone (N=337) (%)	
		Grade 3	Grade 4	Grade 3	Grade 4
	Neutropenia	32.6	38.3	7.4	0.9
Homotologia	Febrile neutropenia	10.4	2.7	0.3	0.9
Hematologic	Anemia	8.0	0.0	2.4	0.0
	Leukopenia	6.8	3.0	0.6	0.3
Controintecting	Diarrhea	12.5	0.6	8.9	0.0
Gastionitestinal	Nausea	6.2	0.0	2.1	0.0
	Fatigue	8.6	0.0	4.5	0.0
Other	Hypokalemia	8.0	0.6	2.7	0.0
	Hand-foot syndrome	6.8	0.0	12.2	0.0
	Neuropathy ^a	5.3	0.6	0.9	0.0

No treatment-related hypersensitivity reactions

^a Pooled term includes: paraesthesia, peripheral sensory neuropathy, polyneuropathy, neuropathy peripheral and peripheral motor neuropathy for all tables Note: Safety population includes 674 patients who were randomized and received study drug

AEs Resulting in Treatment Discontinuation in ≥1% of Patients in Either Arm

	Tesetaxel plus Capecitabine (N=337) (%)	Capecitabine Alone (N=337) (%)
Neutropenia or febrile neutropenia	4.2	1.5
Neuropathy	3.6	0.3
Sepsis or septic shock	1.8	0.6
Diarrhea	0.9	1.5
Hand-foot syndrome	0.6	2.1
Patients discontinuing treatment due to any AE ^a	23.1	11.9

^a Includes 1.8% (6 patients) treatment-related deaths (5 sepsis, 1 cardiorespiratory arrest) in the tesetaxel plus capecitabine arm and 0.9% (3 patients) treatment-related deaths (2 septic shock, 1 colitis) in the capecitabine alone arm

Note: Patients may have discontinued treatment for multiple adverse events. One patient discontinued treatment for both febrile neutropenia and sepsis in the tesetaxel plus capecitabine arm and one patient discontinued treatment for both diarrhea and febrile neutropenia in the capecitabine alone arm. Note: Safety population includes 674 patients who were randomized and received study drug

San Antonio Breast Cancer Symposium®, December 8 – 11, 2020

Relative Delivered Dose Intensity

	Tesetaxel (Combination Arm)	Capecitabine (Combination Arm)	Capecitabine (Monotherapy Arm)
Patients with dose reductions	76%	58%	61%
Primary reason for dose reduction	Neutropenia	Neutropenia	Hand-foot syndrome
Patients receiving G-CSF ^a	58% (Median = 2 cycles)		6%
Relative delivered dose intensity cycles 1-12	81%	79%	76%

^a G-CSF allowed only after occurrence of Grade ≥3 neutropenia or febrile neutropenia and only on capecitabine off days This presentation is the intellectual property of the authors/presenter. Contact them at joyce.oshaughnessy@usoncology.com for permission to reprint and/or distribute. 15

Conclusions

- The all-oral regimen of tesetaxel plus a reduced dose of capecitabine significantly improved PFS vs. capecitabine alone
 - Median PFS was 9.8 months vs. 6.9 months, an improvement of 2.9 months
 - HR=0.716; p=0.003
- Neutropenia was the most frequent grade ≥3 TEAE
 - Generally manageable, primarily with dose reductions and G-CSF as needed
 - Treatment discontinuation due to neutropenia or febrile neutropenia was 4.2% for tesetaxel plus capecitabine vs. 1.5% for capecitabine alone
- Rates of grade ≥3 neuropathy (5.9%) and grade 2 alopecia (8.0%) were low
- Tesetaxel plus a reduced dose of capecitabine is a potential new treatment option for patients with HR positive, HER2 negative MBC

Acknowledgements

We thank the investigators, study team personnel, and especially the patients and their caregivers who made CONTESSA possible

Country	Patients
United States	286
Ukraine	49
Spain	46
South Korea	42
Russia	34
France	33
Australia	30
Taiwan	25
Canada	23
Germany	22
Poland	21
Hungary	18
Belgium	15
Singapore	15
Austria	8
Thailand	8
Czech Republic	5
Italy	5
Total	685

Countries with enrolling clinical study sites